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Abstract 

Two-level fractional factorial designs have been wildly used to investigate the effect 

of factors in many fields. For some designs, the main effects and the interactions are 

aliased in chain. The technique of foldover, in which requires the same size as an original 

experiment, is often used for conducting follow-up experiments to break the alias chain. In 

this article, for economic reasons, we give some examples to illustrate two folding 

techniques, semi-folding and double semi-folding, and compare the results based on the 

criterion of clear.    
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2k-p的雙半摺疊設計 

廖本煌* 

摘 要 

2層次的部分因子設計被廣泛應用於各個領域。對於一些設計其主效應與交互作

用有別名鏈的關係。摺疊設計為用與原設計相同的實驗點，然後應用技巧來破壞設計

中的別名鏈。此篇文章我們舉一些例子並用清晰的準則，說明並比較半摺疊設計與雙

半摺疊設計。 
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1. Introduction 

Experiments play an important role for investigators in all fields studied either in discovering 

more about a particular process or in comparing the effects of several factors on some phenomena. 

Usually, experiments often involve several factors at the same time. A complete factorial experiment 

can solve problems that occur in the design of an experiment of which its goal is to determine suitable 

tolerances for the factors in a manufacturing process. As we know, the complete factorial experiments 

are quite resource consuming either in labor or in time if the number of runs required is large. In 

practice, what we need is methods that involved only the selection of a subset of the complete factorial 

design which the important effects are still estimated with the same accuracy. The orthogonal main 

effects plans permit the estimate of all main effects with minimum error in a factorial experiment 

without correlation given that, the interactions are negligible. These kinds of designs are considered 

by authors such as Plackett and Burman (1946), Bose and Bush (1952), Addelman (1961), Dey and 

Ramarkrishna (1977), Gupta, Nigam and Dey (1982), and Nigam and Gupta (1985). 

Many experimenters believe it is better to introduce many factors, each with a high and low level, 

into the experiment rather than choosing arbitrarily a few factors and run many levels on each. In the 

2k factorial designs, as the number of factors increases, the number of runs required for a complete 

replicate of the design rapidly outgrows the resources of most experiments. For example, a complete 

27design requires 128 runs. In this situation only 7 of the 127 degrees of freedom correspond to main 

effects, and only 21 degrees of freedom correspond to two-factor interactions. Finney (1945) 

introduced fractional factorial designs which call for few runs, that is, it is not necessary to run all 

possible combinations of factor levels. The fractional factorial designs have been widely used in 

industrial experiments in which several factors are involved, which in this case, the higher order factor 

interactions may be ignored. A regular 2k-p fractional factorial design is determined by its defining 

contrast subgroup, which consists of 2p-1 defining words. These designs have p independent defining 

words, which a word consists of letters that are the names of the factors denoted by 1, 2, …, k. Let Ai 

denote the number of words of length i in its defining contrast subgroup. The vector W = (A1, …, Ak) 

is called the worth-length pattern of the design. The resolution of a design is defined as the smallest r 

such that Ar 1. In above example, if we concern the main effects only, then we may perform 27-4 

fractional factorial design with eight points. The generators for this design can be constructed by I = 

124, I = 135, I = 236, and I = 1237, and thus the complete defining subgroup for this design is I = 124 

= 135 = 2345 = 236 = 1346 = 1256 = 456 = 1237 = 347 = 257 = 1457 = 167 = 2467 = 3567 = 

1234567 with the word-length pattern W = (0, 0, 7, 7, 0, 0, 1). This is a resolution III design because 

the smallest number of letters in any word of the defining contrast subgroup is three. Furthermore, if 

the experimenter cares about some two-factor interactions, then 27-3 with resolution IV can be 

considered. 
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It is known that the regular 2k-p fractional factorial design consists of k – p basic factors and p 

independent generated factors. A reasonable criterion is to select the best generators such that the 

resulting design has the highest resolution. Although it is the criterion to choose a good design, 

sometime resolution alone is insufficient to distinguish among designs with the same resolution. Fries 

and Hunter (1980) proposed the criterion for the minimum aberration (MA) to discriminate designs 

with the same resolution. For any two designs D1 and D2 with r being the smallest value such that 

Ar(D1)≠Ar(D2), D1 is said to have less aberration than D2 if Ar(D1)<Ar(D1), D1 is referred ad the 

minimum aberration design when there is no design with less aberration than D1 The minimum 

aberration criterion is commonly used for the selecting the optimal designs. However, other criterion, 

for example, clear can lead to better designs, especially in the irregular designs. We shall call a main 

effect or two-factor interaction “clear to estimate” if it can be estimated when other main effects or 

two-factor interactions appear in the same model. That is, a main effect or two-factor interaction clear 

if none of its aliases are main effects or two-factor interactions. The reader can refer to the paper, Wu 

and Chen (1992), to get more detail concept. Fold-over technique is the common application of the 

follow-up strategies for two-level fractional factorial experiments to run an additional experiment of 

the same size of the original experiment. Several authors are interested in this kind of research, such 

as Box and Wilson (1951), Box and Hunter (1961), Li and Mee (2002), Montgomery and Runger 

(1996), and Montgomery (2013). It poses an interesting question of this kind of design if the 

experimenter wants to run a second experiment when the analysis of the initial experiment did not 

reveal any specific type of significant effects. In this case, what action should she/he take? What kind 

of criterion should be applied to find the optimal follow-up design? We may refer this question to 

some papers that are described by Li and Lin (2003) and Chen and Cheng (2004). Using a half-run 

size of the original design as the follow-up plan was also considered by authors such as John (2000), 

Mee and Peralta (2000), and Liau and Huang (2007). 

The organization of this article is as follows. In section 2, we present some construction methods 

of foldover design and semi-folding design to assist readers to understand the concept. Some 

examples that use the technique of double semi-folding will be mentioned in section 3, followed by 

our conclusions in section 4. 

2. Foldover and semi-folding design 

The regular 2k-p fractional factorial is orthogonal, so the construction of the design and analysis of 

the data from the experiment are reasonably straightforward. The fraction is obtained from the original 

design by folding over, reversing the signs of factors – the original design – also known as the 

foldover design (Box and Hunter, 1961). If a foldover plan is only considered by folding the generated 

factors, then it is called a core foldover plan (Li and Lin, 2003). Base on the criterion of MA, they 

utilized computer for searching the optimal foldover plans for 16 and 32 runs and tabulated the results 
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for practical use. As an example for interpreting the concept of core foldover plan, consider a MA25-2  

with resolution III design. We may select 124 and 135 as the independent defining words, hence the 

defining contrast subgroup of this plan is defined by I = 124 = 135 = 2345. We may choose the 

numbers 1, 2, and 3 as the basic factors and numbers 4 and 5 as the generated factors. That is, factor 4 

can be constructed by 4 = 12 and factor 5 is constructed by 5 = 13. The four core foldover plans can 

be expressed by  
 
  (i) {0, 145, 24, 125, 35, 134, 2345, 123}, (ii) {4, 15, 2, 1245, 345, 13, 235, 1234}, 

(iii) {5, 14, 245, 12, 3, 1345, 234, 1235}, (iv) {45, 1, 25, 124, 34, 135, 23, 12345}. 
 

In which the number 0 represents the identity element. Note that the first set (i) is a subgroup and the 

other three sets are the cosets of the first set. It is not hard to recognize that we should obtain the same 

experiment elements for folding factor 1 or factors 3 and 5. That is, if we perform the folding 

procedure on factor 1, we will obtain the eight experiment runs defined by I = -124 = -135 = 2345. 

Similarly, the same defining contrast subgroup will be obtained by folding factors 3 and 5. 

In general, we describe a semi-folding plan the following way: foldover on ___; subset on ___ 

(Mee and Peralta, 2000). In fact, the combined design produced by the original 2k-p design plus the  

2k-p-1 design by semi-folding technique is an irregular design which three fractions are formed in this 

case. Hence the aberration criterion cannot be used for selecting the follow-up design in this situation. 

Alternatively, we may use other criterion, say clear, to pursue the better design. As a matter of 

convenience, we call the main effect or two-factor interaction “clear” if it can be estimated when other 

main effects or two-factor interactions appear in the same model. Suppose that two generators of a  

26-2 design are giving by 5 = 12 and 6 = 134, the complete defining contrast subgroup is I = 125 = 

1346 = 23456. For example, suppose that “foldover on factors 5 and 6; subset on the high level of 

effect 13” is our consideration for the additional experiment. Abbreviating “foldover” with f0 and 

“subset” with ss, we will denote this semi-folding design as “f0 =56; ss=13+”. Consequently, we take 

the eight new points at the high level of the effect 13 defined by 

I = 13 = -125 = -235 = -1346 = -46 = 23456 = 12456. 

The original design can be partitioned into two parts based on the effect 13. The first fraction with 

eight runs at the high level of 13 is defined by 

I = 13 = 125 = 235 = 1346 = 46 = 23456 = 12456. 

The second fraction at the low level of the effect 13 is defined by 
 

I = -13 = 125 = -235 = 1346 = -46 = 23456 = -12456. 

The new experiment may be called the third fraction. The main effects 3, 4, 6 and two-factor 

interactions 23, 24, 26, 45, 35, 45, and 56 can be clear to estimate from the original plan. Combing the 

first and the third fractions, the fraction with sixteen runs is defined by 
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I = 13 = 23456 = 12456. 

 

Consequently, the effects 2, 4, 5, 6, 24, 25, 26, 45, 46, and 56 can be clear to estimate from this 

fraction. Combing the second and the third fractions, we may obtain another fraction defined by 
 

I = -235 = -46 = 23456. 
 

Obviously, four effects, 1, 12, 13, and 15, are clear to estimate from this fraction. Hence, all six main 

effects plus eleven two-factor interactions are clear to estimate in the combing design with 

twenty-four runs. One thing worth mentioning is that we may consider using a MA 26-2 defined I = 

1235 = 1246 = 3456 as the initial design. The basic factors are 1, 2, 3, and 4 in this design. If the 

method of semi-folding, f0 = 5; ss = 1+, is applied, then all six main effects and nine two-factors, 13, 

15, 23, 25, 34, 35, 36, 45, 56, are clear to estimate. In above design, if we perform folding on effects 5, 

6, and 56 and the subset is taken from all the effects, then the optimal semi-folding plan is obtained 

with fifteen effects “clear” to estimate six main effects and nine two-factor interactions. In general, 

there are (2p-1)X(2k-p-1) possibilities in choosing a semi-folding design for a giving 2k-p design. Here, 

we only consider taking the high level of the effect for the subset, because they have the same 

estimation properties for taking high or low level effect for the subset. 

3. Double semi-folding design 

Because of the run size economy, the 2k-p-2 replicate of the 2k-p design is considered for the 

follow-up experiment. To perform the double semi-folding technique, we use the notation, f0=X
+; 

ss=Y+, to indicate the additional points. For illustration, we will give some examples to show the 

properties of double semi-folding. 

 

Example 3.1. Suppose that the starting design is based on a 27-2 design, two generators are giving by 6 

=123 and 7 = 245, with the defining contrast subgroup I = 1236 = 2457 = 134567. The new fraction 

can be obtained by the way “f0 =7+ ss=1+”, it means that we take the additional eight points by the 

technique of double semi-folding. We may take the points at high level of the factors 1 and 7, then 

switch the sign of the high level of the factor 7. The original plan is divided by four sets of eight 

points each that have the same defining contrast subgroup, but with different signs based on the effects 

1 and 7: 
  (i) I = 1 = 7 = 17 = 1236 = 236 = 12367 = 2367 = 2457 = 12457 = 245 = 1245 = 134567 = 34567 = 

13456 = 3456;  
 (ii) I = -1 = -7 = 17 = 1236 = -236 = -12367 = 2367 = 2457 = -12457 = -245 = 1245 = 134567 = 

-34567 = -13456 = 3456; 
 (iii) I = -1 = 7 = -17 = 1236 = -236 = 12367 = -2367 = 2457 = -12457 = 245 = -1245 = 134567 = 

-34567 = 13456 = -3456; 
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 (iv) I = 1 = -7 = -17 = 1236 = 236 = -12367 = -2367 = 2457 = 12457 = -245 = -1245 = 134567 = 
34567 = -13456 = -3456. 

 

The new eight points given by f0 7
+; ss=1+ is defined as  

 
 (v) I = 1 = -7 = -17 = 1236 = 236 = -12367 = 2367 = -2457 = -12457 = 245 = 1245 = -134567 = 

-34567 = 13456 = 3456. 
 

Combing the first and the fifth designs, we obtain the new fraction defined by  
 

I = 1 = 1236 = 236 = 245 = 1245 = 13456 = 3456. 
 

Two-factor interactions 27, 37, 47, 57, and 67 can be clear to estimate from this combing plan. Adding 

set (iii) to the new points gives the fraction defined by  
 

I = -17 = 1236 = -2367 = -12457 = 245 = -34567 = 13456 
 
from which main effects 3, 6 and two-factor interactions 34, 35, and 56 are clear to 
estimate. Combing the set (iv) and (v), we obtain another new fraction defined by  
 

I = 1 = -7 = -17 = 1236 = 236 = -12367 = -2367. 
 

Obviously, two-factor interactions 24, 25, 34, 35, 45, 46, and 56 can be clear to estimate from this 

fraction. Consequently, all main effects and two-factor interactions 14, 15, 17, 24, 25, 27, 34, 35, 37, 

45, 46, 47, 56, 57, and 67 are clear to estimate in this forty-run combined design. Note that the main 

effects, 1, 2, 3, 4, 5, 6, 7, and two-factor interactions, 14, 15, 17, 34, 35, 37, 46, 47, 67, are estimated 

from the original thirty-two runs by the method of the least squares; but the effects 24, 25, 27, 45, 56, 

57 are not the least squares estimates. From another perspective, we add new eight points to break the 

alias chain and the combined design is clear to estimate additional six two-factor interactions. 
 

Example 3.2. To illustrate the use of the technique of double semi-folding again, suppose we have 

nine factors and we are interested in estimating main effects and getting some information of 

two-factor interactions. The defining contrast subgroup of the original 29-3design is defined by I = 

13457 = 2368 = 1245679 = 4569 = 13679 = 234589 = 12789. This is a resolution IV design with 

sixty-four points. Adding new sixteen points that is obtained by the way “f0=79+; ss=1+”. Finally, the 

combined design with eighty points provides all main effects and some two-factor interactions, 12, 13, 

14, 15, 16, 17, 18, 19, 24, 25, 27, 29, 34, 35, 37, 39, 45, 46, 47, 48, 49, 56, 57, 58, 59, 69, 78, 79, 89, 

being clear to estimate. 

Reconsidering Example 3.1 again, the experimenter may use the method of semi-folding “f0=7 ; 

ss=1+ ” to get the new points. Then the forty-eight points are constructed from three fractions: I = 
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1236 = 2457 = 134567; I = 1 = 236 = 1236; I = 1236 = -12457 = -34567. After some algebraic 

operations, we can obtain that all main effects and some two-factor interactions 14, 15, 17, 24, 25, 27, 

34, 35, 37, 45, 46, 47, 56, 57, and 67 are clear to estimate in this combined design. Similarly, if we use 

the method of semi-folding “f0=79 ; ss=1” in Example 3.2 to get new points, then same clear effects 

will be obtained as the double semi-folding. The results in these examples reveal intrinsic structures of 

the semi-folding and double semi-folding that can have the same clear effects. 
 

4. Conclusion 

For the regular 2k-p fractional factorial designs, the MA criterion is commonly used for choosing 

optimal plans. However, the criterion of MA does not seem to work in all situations, especially in 

irregular designs. In this paper, we apply the criterion of “clear” to judge the competitive plans. In the 

previous section, we give examples to illustrate the properties of the estimation of the double 

semi-folding, and discuss two constructive methods, semi-folding and double semi-folding. Two 

provided examples show that two methods have the same clear effects; that is, we can use the method 

of double semi-folding to obtain the appropriate additional points to replace the method of 

semi-folding which saves half of the cost. For large k, double semi-folding is significantly much better 

than the semi-folding because it requires only half the points of a semi-folding fraction to have the 

same clear effects. In general, the proper method to develop systematic techniques to obtain same 

information with the use of two approaches is worth further exploration. 
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